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Abstract

e Convincing evidence of a stochastic gravitational wave background

(SGWB) has been found by the NANOGrav 15-year data set
(NG15).

e \We evaluate the possibility of its source being massive tensor
perturbations induced by parametric resonance during inflation, in a
minimal theory of massive gravity (MTMG)

e \We find values of the graviton mass, mass cutoff time, and Hubble
rate of inflation that amplify the energy spectra of primordial GWs
to reproduce NG15 within 1-30.

e However, it is difficult to obey the BBN and CMB bound without
introducing a suppression mechanism or making the graviton mass
cutoff time too deep into the matter dominated era.

Background
o First detection of SGWB by NANOGrav collaboration in 2023 [1}

e Most popular explanation is astrophysical: inspiraling supermassive
black hole binaries (SMBHBs) emitting low-frequency GWs [2].

e More exotic explanations lie in cosmological sources: cosmic
strings, domain walls, first-order phase transitions, primordial
magnetic fields, primordial GWs, scalar-induced GWs, etc [3].

e Hypothesis: primordial GWs generated from quantum mechanical
nerturbations during inflation, amplified by parametric resonance
and blue tilted by massive gravity (MG)
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Energy Density of GWs

h%QGW’O as a function of f and Ny (left),

he present-day energy densities of GWs help us look at how
primordial GWs are influenced by deviations from GR

Energy density is defined as
1 dpew

p.dlog k
In massive gravity, (2w is blue tilted / amplified:
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Pcr(k) is defined in our paper [6] in Eq. 14.
v in the exponent is defined as

Tm = 1010H 27, Hins = 108 GeV
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Conclusions

ime-dependent MTMG successfully reproduces NG15
BBN bound is violated for f > 107" Hz.

Suppression mechanism, analogous to the damping of the energy
density from the free-streaming neutrinos [7], could be introduced

More complicated functions for Mgw(t) are possible; future work
can try to place constraints on the time evolution of the mass

Further observations that place constraints on H;., a,, 7 would be
able to constrain the parameters of this theory

Source Code
The NANOGrav 15-Year data is available at nanograv.org/science/data,

source code to reproduce all of the figures in our paper [6] is available
at github.com /ChrisChoi314 /constrain_mass_nanograv_15 and the TeX
for this poster is at github.com/ChrisChoi314 /mg_ poster_aas243.

(middle), and H,s (right).

'Massive Gravity

e \We consider model of MTMG
[4] where graviton mass Mgw -
is step-function of time [5] (\ |

e Equation of motion for the two .
tensor modes:
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e Scale factor a and Mc¢w: \/
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'Results

Our values for the parameters are

Mew = 1.298Hy¢, Hine = 1.7 GeV to stay within 1o (red curve)
Mew = 1.251 Hyys, Hine = 8.0 GeV to stay within 20 (blue curve)
Mew = 1.201 Hyy¢, Hine = 50. GeV to stay within 30 ( curve)
purple curve — partially produces the signal for large {2cw and f

curve — partially produces the signal for small {2gw and f

Respecting CMB, BBN bounds and reproducing the signal are mutually
exclusive. If we don't respect them, we achieve good agreement with
signal with a caveat: 7, is too deep into the matter dominated era.
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