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Abstract
• Convincing evidence of a stochastic gravitational wave background

(SGWB) has been found by the NANOGrav 15-year data set
(NG15).

• We evaluate the possibility of its source being massive tensor
perturbations induced by parametric resonance during inflation, in a
minimal theory of massive gravity (MTMG)

• We find values of the graviton mass, mass cutoff time, and Hubble
rate of inflation that amplify the energy spectra of primordial GWs
to reproduce NG15 within 1-3σ.

• However, it is difficult to obey the BBN and CMB bound without
introducing a suppression mechanism or making the graviton mass
cutoff time too deep into the matter dominated era.

Background
• First detection of SGWB by NANOGrav collaboration in 2023 [1]
• Most popular explanation is astrophysical: inspiraling supermassive

black hole binaries (SMBHBs) emitting low-frequency GWs [2].
• More exotic explanations lie in cosmological sources: cosmic

strings, domain walls, first-order phase transitions, primordial
magnetic fields, primordial GWs, scalar-induced GWs, etc [3].

• Hypothesis: primordial GWs generated from quantum mechanical
perturbations during inflation, amplified by parametric resonance
and blue tilted by massive gravity (MG)

Massive Gravity
• We consider model of MTMG

[4] where graviton mass MGW
is step-function of time [5]

• Equation of motion for the two
tensor modes:
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• Scale factor a and MGW:
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Energy Density of GWs
• The present-day energy densities of GWs help us look at how

primordial GWs are influenced by deviations from GR
• Energy density is defined as

ΩGW = 1
ρc

dρGW
d log k

• In massive gravity, ΩGW is blue tilted / amplified:
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• PGR(k) is defined in our paper [6] in Eq. 14.
• ν in the exponent is defined as
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Results
Our values for the parameters are

• MGW = 1.298Hinf, Hinf = 1.7 GeV to stay within 1σ (red curve)
• MGW = 1.251Hinf, Hinf = 8.0 GeV to stay within 2σ (blue curve)
• MGW = 1.201Hinf, Hinf = 50. GeV to stay within 3σ (green curve)
• purple curve – partially produces the signal for large ΩGW and f

• golden curve – partially produces the signal for small ΩGW and f

Respecting CMB, BBN bounds and reproducing the signal are mutually
exclusive. If we don’t respect them, we achieve good agreement with
signal with a caveat: τm is too deep into the matter dominated era.
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Conclusions
• Time-dependent MTMG successfully reproduces NG15
• BBN bound is violated for f ≳ 10−6 Hz.
• Suppression mechanism, analogous to the damping of the energy

density from the free-streaming neutrinos [7], could be introduced
• More complicated functions for MGW(t) are possible; future work

can try to place constraints on the time evolution of the mass
• Further observations that place constraints on Hinf, ar, τr would be

able to constrain the parameters of this theory

Source Code
The NANOGrav 15-Year data is available at nanograv.org/science/data,
source code to reproduce all of the figures in our paper [6] is available
at github.com/ChrisChoi314/constrain_mass_nanograv_15 and the TeX
for this poster is at github.com/ChrisChoi314/mg_poster_aas243.
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